ANNEX 1

Specification of elements of railway siding infrastructure: „Technical Depot of „ŁKA" sp. z o.o. - Łódź Widzew

1. Switch towers and technical posts in the Siding and their personnel:
1) The whole railway Siding infrastructure constitutes one switch tower.
2) The boundary of the tower crosses:

- From the west (towards Łódź Fabryczna) - perpendicularly to the axis of track No 201, at the level of Tm 100 in km 4,921 line No 17 Łódź Fabryczna - Koluszki (km 0,053 of the siding),
- From the east (towards Koluszki) - perpendicularly to the axis of track No 202, at the level of Tm 137 in km 5,751 line No 17 Łódź Fabryczna - Koluszki (km 0,886 of the siding).

3) Service of turnouts No 24 and 47 and the coupled derails No 24 and 47, as well as manoeuver shields Tm 15 and Tm 21, built on tracks No 201 and 202 respectively, is provided from switch tower LCS Łódź Widzew by employees of the administrator of PKP PLK S.A. infrastructure.
4) All turnouts of the Siding's track system and railway traffic control devices within the Siding are remotely controlled from the Siding switch post referred to as "Control Centre" (abbreviated as: „CS"), which is located on the first floor of the inspection-repair hall in the siding.
5) Personnel of this post includes employees qualified as train dispatchers or signalmen.

2. Tracks in the Siding:

1. Prices for services rendered by the Operator to the Carrier as part of access to SIF
2. Article 36e of the Act on rail transport provides the legal basis to determine the way of establishing fees for services rendered by the Operator to the Carrier in relation to the access to SIF.
3. Basic fee is charged for services rendered by the Operator to the Carrier, i.e. for access to the storage tracks and devices of ZT ŁKA Siding specified in Chapter II (7)(1) of the Regulations.
4. Reservation fee is paid for an ordered and reserved service, in accordance with the application, in SIF, which has not been performed by the Carrier due to reasons attributable to the Carrier. The following amounts of the reservation fee shall be payable:
1) 0% of the agreed basic fee in case of resignation from the service in the period of more than 7 calendar days before the planned date of the service provision;
2) 10% of the agreed basic fee in case of resignation from the service in the period shorter than 7 calendar days and longer than 3 calendar days before the planned date of the service provision;
3) 20% of the agreed basic fee in case of resignation from the service in the period shorter than 3 calendar days before the planned date of the service provision.
4. Detailed rules of determining the fees for services rendered by the Operator to the Carrier in relation to the access to SIF and the value of each service specified in Chapter II (7) are specified in the Price list of services provided in the Railway Siding Servicing Infrastructure Facility (Annex 5).
5. Rules of making payments for services rendered in relation to the access to SIF are laid down in the Contract.

	$\begin{aligned} & 00 \\ & \text { O } \\ & \vdots \\ & \vdots \end{aligned}$	Track total length			Track useful length in the east. / west. direction:			Capacity in the east. / west. direction			Comments
		From	To		From	To	$\begin{aligned} & \text { 둥 छ } \\ & \text { © } \\ & \hline \end{aligned}$				
1	2	3	4	5	6	7	8	9	10	11	12
$\frac{21}{E}$		$\begin{aligned} & \text { PR } \\ & 105 \end{aligned}$	$\begin{gathered} \text { PR } \\ 111 \end{gathered}$	473	Tm131 Tm107	$(105-t 21)$ $(t 21-111)$	370	8 7	5	O	
$\begin{gathered} 22 \\ E \end{gathered}$		$\begin{aligned} & \mathrm{KR} \\ & 103 \end{aligned}$	$\begin{aligned} & \mathrm{KR} \\ & 113 \end{aligned}$	483	Tm130 Tm106	$(105-\mathrm{t} 22)$ $(\mathrm{t} 22-111)$	364 368	7 8	5	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	Layover and entering vehicle into traffic
$\begin{gathered} 23 a \\ E \end{gathered}$		$\begin{aligned} & \text { KR } \\ & 101 \end{aligned}$	b.h.z.	208	k.p.z. Tm103	(103-t23a) k.p.z.	137 136	2	2	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	Receiving arriving vehicle
$\frac{23 b}{E}$		b.h.z.	b.h.w.	139	b.h.w.	b.h.z.	139	3	2	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	Vehicle washing, cleaning,

					b.h.z.	b.h.w.	139				water supply, human waste removal, deicing
$\begin{gathered} 23 c \\ E \end{gathered}$		b.h.w.	$\begin{gathered} K R \\ 116 \end{gathered}$	255	Tm132	k.p.w.	142	3	2	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	
					k.p.w.	(t23c-113)	148				
$\begin{gathered} 24 \mathrm{a} \\ \mathrm{E} \end{gathered}$		$\begin{aligned} & \mathrm{KR} \\ & 101 \end{aligned}$	b.h.z.	208	k.p.z.	(102-t24a)	146	3	2	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	Layover and entering vehicle into traffic
					Tm102	k.p.z.	139				
$\underline{24 b}$			b.h.w.	139	b.h.w.	b.h.z.	139	3	2	8	P2,P3, devices to measure wheel load, overhead crane, lathe trap door, lifting jacks
					b.h.z.	b.h.w.	139				
$\begin{gathered} 24 \mathrm{c} \\ \mathrm{E} \end{gathered}$		b.h.w.	$\begin{aligned} & \mathrm{KR} \\ & 115 \end{aligned}$	209	Tm133	k.p.w.	146	3	2	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	
					k.p.w.	(t24c-112)	147				
		$\begin{aligned} & P R \\ & 104 \end{aligned}$	b.h.z.	170	k.p.z.	(104-t25a)	113	2	1	O	Receiving arriving vehicle
E					Tm105	(t25a-t25b)	109				
		b.h.z.	b.h.w.	139	b.h.w.	b.h.z.	139	3	2	8	P1,P2, overhead crane, platform, wheel sets' wear and tear testing stand, sand filling, cleaning
25b					b.h.z.	b.h.w.	139				
	¢ 웅 ㄲ	b.h.w.	$\begin{aligned} & \hline \text { PR } \\ & 110 \end{aligned}$	170	Tm129	k.p.w.	113	2	1	O-	

Abbreviations used in the table: Tm 107 - Manoeuver shield, (t21-111) or (116-t202) axle counter number, Wk - derail, PR - turnout starting point, KR - turnout ending point, b.h.z. - the hall gate from the western direction, b.h.w. - the hall gate from the eastern direction, b.k.o. - buffer stop beam, zas.k.o. - start of backfill before the buffer stop, k.p.z. - the edge of the passage along the hall on the western side, k.p.w. - the edge of the
passage along the hall on the eastern side, *) - Łódź Widzew Station turnout, $\underline{201 \text { - }}$ number of the track not included in the Siding capacity, E - electrified track.

1) The Siding's total length is $\mathbf{3} \mathbf{8 3 5} \mathbf{~ m}$;
2) The Siding's capacity - maximum number of rail vehicles that can be simultaneously held on the Siding's tracks (excluding grading, by-pass and inspection-repair tracks), which however allows to maintain the Siding's full operating efficiency (taking into account the operating reserve ratio: „0,6") - is:
a) For emu Flirt 3 type (length: 45,70 m) - $\mathbf{2 2}$ vehicles,
b) For emu EN 57 type (length: 64,77 m) - $\mathbf{1 5}$ vehicles.
3. Turnouts and catch points in the Siding and turnouts towards the Siding:

Number, kind and type of turnout, type of the point lock	Derail number			Shunting method: electr. (e), manual (r), mech. (m)	Turnout equipped with EOR (yes / no)	Lighting of switch / derail (no / continuous / periodic)	Additional information
1	2	3	4	5	6	7	8
$\begin{gathered} 24, \\ \text { Rz-60E1-1:9-300, } \\ \text { suw. } \end{gathered}$	-	On truck No 104	$\begin{aligned} & \text { LCS } \\ & \text { ŁW } \end{aligned}$	e	yes	continuous	Service and maintenance by PKP PLK
$\begin{gathered} \text { 101, } \\ \text { Rłd-49E1-1:9-300 } \\ \text { suw. } \end{gathered}$	-	On turnout No 103	CS	e	yes	continuous	
$\begin{gathered} 102 \\ \text { Rz-49E1-1:9-190 } \\ \text { suw. } \end{gathered}$	-	On truck No 24a	CS	e	yes	continuous	
$\begin{gathered} 103 \\ \text { Rz-49E1-1:9-190 } \\ \text { suw. } \end{gathered}$	-	On truck No 23a	CS	e	yes	continuous	
$\begin{gathered} \text { 104 } \\ \text { Rz-49E1-1:9-190 } \\ \text { suw. } \end{gathered}$	-	On truck No 25a	CS	e	yes	continuous	
$\begin{gathered} 105 \\ \text { Rz-49E1-1:9-190 } \\ \text { suw. } \end{gathered}$	-	On truck No 21	CS	e	yes	continuous	
$\begin{gathered} 110 \\ \text { Rz-49E1-1:9-190, } \\ \text { suw. } \end{gathered}$	-	On truck No 25c	CS	e	yes	continuous	
$\begin{gathered} \text { 111, } \\ \text { Rz-49E1-1:9-190, } \\ \text { suw. } \end{gathered}$	-	On truck No 21	CS	e	yes	continuous	

$\begin{gathered} \hline 112 \\ \text { Rz-49E1-1:9-190 } \\ \text { suw. } \end{gathered}$	-	On truck No 24c	CS	e	yes	continuous	
$\begin{gathered} 113 \\ \text { Rz-49E1-1:9-190 } \\ \text { suw. } \end{gathered}$	-	On truck No 23c	CS	e	yes	continuous	
$\begin{gathered} 114 \\ \text { Rz-49E1-1:9-190 } \\ \text { suw. } \end{gathered}$	-	On truck No 27	CS	e	yes	continuous	
$\begin{gathered} \hline 115, \\ \text { Rz-49E1-1:9-190 } \\ \text { suw. } \end{gathered}$	-	On turnout No 113	CS	e	yes	continuous	
$\begin{gathered} 116 \\ \text { Rz-49E1-1:9-190 } \\ \text { suw. } \end{gathered}$	-	On turnout No 115	CS	e	yes	continuous	
$\begin{gathered} 47 \\ \text { Rz-49E1-1:9-190, } \\ \text { suw. } \end{gathered}$	-	For track No104	$\begin{aligned} & \text { LCS } \\ & \text { ŁW } \end{aligned}$	e	yes	continuous	Service and maintenance by PKP PLK
-	Wk 24	Nałożona	$\begin{aligned} & \text { LCS } \\ & \text { ŁW } \end{aligned}$	e	-	continuous	Service and maintenance by PKP PLK
-	Wk 47	Nałożona	$\begin{aligned} & \text { LCS } \\ & \text { ŁW } \end{aligned}$	e	-	continuous	Service and maintenance by PKP PLK

[^0]4. Security and traffic control devices in the Siding:

1) External STC devices erected by or on the tracks of the Siding include: switch drives with control of switch blades positioning EEA-5 type, derails, luminous manoeuver shields (signal lanterns EHA-22 type), indicators, wheel sensors ELS-95 type of the axle counter system (SOL21) designated to control availability of tracks and turnouts and cable network with casing (cable cabinets, cable cots, cable boxes).
2) Internal railway traffic control devices shall mean some of the STC devices held in separate closed premises of the inspection-repair hall in the depot (micro processing facility) and in the room where computercontrolled interlocking system is kept (control room), which fulfil conditions of safe management of the railway traffic; they are controlled from the control point at the operator's post, or operate automatically based on the received external control signals. The internal STC devices include: interlocking computer, object controllers, cabinet with internal devices of the axle counter system EAS-4 type, power supply system supporting devices in the Siding, computer control and set-up unit.
3) The internal STC devices are connected with external devices which they control, processing data on their state and operations.
4) Computer system of STC devices EBI Lock 950 version 4, with controllers
STC-2 is used in the Siding.
5) $E B I$ Screen 300 W subsystem is used in $E B I$ Lock 950 v. 4 interlocking system at the operator's post; it operates as a local computer desktop.
6) STC devices in the Siding are supplied by two independent networks through a UPS power supply system.
7) The Diagram of rail traffic security and control equipment in the Siding constitutes Annex 4 to the Regulations.
8) The list of manoeuver shields used in the Siding is presented in the table below:

Name	Symbol	Purpose	Method and entity that provides this service	Comments
1	2	3	4	5
Manoeuver shield	Tm 100	Exit from LCS $Ł W$ from the east towards track 201	$\begin{aligned} & \text { Electric, } \\ & \text { CS } \end{aligned}$	
Manoeuver shield	Tm 101	Exit from track 201 trawards depot	$\begin{gathered} \text { Electric, } \\ \text { CS } \end{gathered}$	
Manoeuver shield	Tm 102	Exit from track 24a towards track 201	Electric, CS	
Manoeuver shield	Tm 103	Exit from track 23a towards track 201	Electric, CS	
Manoeuver shield	Tm 104	Exit from track 26a towards track 201	Electric, CS	
Manoeuver shield	Tm 105	Exit from track 25a towards track 201	Electric, CS	
Manoeuver shield	Tm 106	Exit from track 22 towards track 201	$\begin{aligned} & \text { Electric, } \\ & \text { CS } \end{aligned}$	
Manoeuver shield	Tm 107	Exit from track 21 towards track 201	Electric, CS	
Manoeuver shield	Tm 128	Exit from track 26c towards track 202	Electric, CS	
Manoeuver shield	Tm 129	Exit from track 25c towards track 202	Electric, CS	
Manoeuver shield	Tm 130	Exit from track 22 towards track 202	$\begin{gathered} \text { Electric, } \\ \text { CS } \end{gathered}$	
Manoeuver shield	Tm 131	Exit from track 21 towards track 202	Electric, CS	
Manoeuver shield	Tm 132	Exit from track 23c towards track 202	$\begin{aligned} & \text { Electric, } \\ & \text { CS } \end{aligned}$	
Manoeuver shield	Tm 133	Exit from track 24c towards track 202	Electric, CS	
Manoeuver shield	Tm 134	Exit from track 28 towards track 202	Electric, CS	
Manoeuver shield	Tm 135	Exit from track 27 towards track 202	Electric, CS	
Manoeuver shield	Tm 136	Exit from track 202 towards depot tracks	$\begin{aligned} & \text { Electric, } \\ & \text { CS } \end{aligned}$	

Manoeuver shield	Tm 137	Exit from LCS $Ł W$ from the east towards track 202	Electric, CS	
Manoeuver shield	Tm 15	Exit from track 201 towards LCS $Ł W$ (from the west)	Electric, LCS $Ł W$ (PKP PLK S.A.)	
Manoeuver shield	Tm 21	Exit from track 202 towards LCS $Ł W$ (from the east)	Electric, LCS $Ł W$ (PKP PLK S.A.)	

5. Railway level crossings and crossings for pedestrian at the rail level in the Siding:
1) A railway and road level crossing - F category - has been constructed in the immediate vicinity of the Siding, beyond its boundaries from the north, where rails of the main additional track of Łódź Widzew Station No 104 and internal access road, leading from Kosodrzewiny St to the Technical Depot cross. It is operated 'remotely' by an employee of the Siding's switch post (CS ŁKA):

Level crossing location (pedestrian crossing)			Distance between the level crossing (pedestrian crossing) and the control facility [m]	Security device on the level crossing (pedestrian crossing)	Comments (entity responsible for the crossing maintenance)
Km	No of the tracks where the crossings are located				
1	2	3	4	5	6
$\begin{gathered} 5,067 \\ \text { (Line } \\ \text { No 17) } \end{gathered}$	104	F	300,0 m (Control Centre)	This level crossing is supplied with gates which remain closed, and are opened by the user if needed and after receiving permission of the train dispatcher of the control room at LCS Łódź Widzew	Detailed way of operations and maintenance of the level crossing is regulated pursuant to the provisions of the Regulations to manage railroad crossing or pedestrian crossing, Annex 6 to these Regulations, the Contract of using the level crossing concluded between the siding user and the administrator of infrastructure, and the lease contract concluded between the user and the co-user of the siding.

2) To combine the railway transport with the car transport in the Siding, to ensure its efficient operations, outside of the inspection-repair hall, along the walls with the entry gates, intertrack space of the tracks No 23a, 24a, 25a, 26a (length: 8 m) and tracks No 23c, 24c, 25c, 26c, 27 and 28 (length: 84 m), has been hardened to the rail level. Additionally, to enable entry for the rail-road vehicle to designated tracks, the intertrack space of the tracks No 23a, 24a, 25a, 26a, in 0,278 km, just like in the previous case, it has been hardened to the rail level at the length of 6 m .
6. Lighting system in the Siding:
1) To illuminate open rail objects, such as tracks, turnouts, level crossings, pedestrian crossings at the rail level and facilities situated next to the rail track, a 'railway' type of luminaires for compensated sodium lamps Boyen 150 W, IP ≥ 65 is used in the Siding.
2) The railway type of luminaires is used in every location where there is a risk of confusing the light emitted by the light casing with a signal for rail vehicles displayed on the signalling device. This type of casing conforms with the requirements laid down by PKP PLK S.A. in „Normative Document No 01-5/ET/2008 (Luminaires)".
3) The method of suspending and arrangement of the luminaires in the Siding provides appropriate and normative parameters of facility lighting, it does not cause glare to train drivers nor impacts visibility and ability to recognise commands of the rail signalling system.
4) The lighting in the Siding is controlled automatically in terms of the function of its illuminance and time, with an option of manual control.
5) The luminaires are mounted on semi-circular short, i.e. $0,5 \mathrm{~m}$, rail jibs, on spun posts, at the level of approx. $10,5 \mathrm{~m}$ above the ground level.
6) The accepted lowest average illuminance is 10 Ix , with the evenness of lighting greater than 0,25 .
7) The list of the lamp posts in the Siding, including their technical details and the method of illuminating the facility and interiors of the inspectionrepair hall, is presented in tables 1 and 2 :

Table 1

No.	Post No	Post type	Type symbol / arm length / angle of the jib	Type of illuminance	Light source type	The way to control switch on and off functions
1.	1/1	EOP10,5/2,5	WR2/250/5 ${ }^{\circ}$	2 * BOYM.S. 150	2 * HST 150W	Autom. control
2.	1/2	EOP10,5/2,5	WR2/250/5 ${ }^{\circ}$	2 * BOYM.S. 150	2 * HST 150W	Autom. control
3.	1/3	EOP10,5/2,5	WR2/250/5 ${ }^{\circ}$	2 * BOYM.S. 150	2 * HST 150W	Autom. control
4.	1/4	EOP 10,5/2,5	WR 2/250/5 ${ }^{\circ}$	2 * BOYM.S. 150	2 * HST 150W	Autom. control
5.	1/5	EOP 10,5/2,5	WR2/250/5 ${ }^{\circ}$	2 * BOYM.S. 150	2 * HST 150W	Autom. control
6.	1/6	EOP 10,5/2,5	WR2/250/5 ${ }^{\circ}$	2 * BOYM.S. 150	2 * HST 150W	Autom. control
7.	1/7	EOP 10,5/2,5	WR2/250/5 ${ }^{\circ}$	2 * BOYM.S. 150	2 * HST 150W	Autom. control
8.	1/8	EOP10,5/2,5	WR1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1 * HST 150W	Autom. control
9.	1/9	EOP 10,5/2,5	WR1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1 * HST 150W	Autom. control
10.	1/10	EOP10,5/2,5	WR 1/250/5 ${ }^{\circ}$	1 *BOYM.S. 150	1 * HST 150W	Autom. control
11.	2/1	EOP 10,5/2,5	WR2/250/5 ${ }^{\circ}$	2 * BOYM.S. 150	2 * HST 150W	Autom. control
12.	2/2	EOP 10,5/2,5	WR 1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1 * HST 150W	Autom. control
13.	2/3	EOP 10,5/2,5	WR1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1 * HST 150W	Autom. control
14.	2/4	EOP 10,5/2,5	WR1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1 * HST 150W	Autom. control

15.	2/5	EOP 10,5/2,5	WR1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1* HST 150W	Autom. control
16.	2/6	EOP 10,5/2,5	WR1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1 * HST 150W	Autom. control
17.	2/7	EOP 10,5/2,5	WR1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1 * HST 150W	Autom. control
18.	3/1	EOP10,5/2,5	WR1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1 * HST 150W	Autom. control
19.	3/2	EOP 10,5/2,5	WR1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1 * HST 150W	Autom. control
20.	3/3	EOP 10,5/2,5	WR1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1 * HST 150W	Autom. control
21.	3/4	EOP 10,5/2,5	WR1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1 * HST 150W	Autom. control
22.	4/1	EOP 12/2,5	WR2/250/5 ${ }^{\circ}$	2 * BOYM.S. 150	2 * HST 150W	Autom. control
23.	4/2	EOP12/2,5	WR2/250/5 ${ }^{\circ}$	2 * BOYM.S. 150	2 * HST 150W	Autom. control
24.	4/3	EOP 12/2,5	WR2/250/5 ${ }^{\circ}$	2 * BOYM.S. 150	2 * HST 150W	Autom. control
25.	4/4	EOP10,5/2,5	WR1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1 * HST 150W	Autom. control
26.	4/5	EOP 10,5/2,5	WR1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1 * HST 150W	Autom. control
27.	4/6	EOP 10,5/2,5	WR 1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1 * HST 150W	Autom. control
28.	4/7	EOP 10,5/2,5	WR 1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1 * HST 150W	Autom. control
29.	4/8	EOP10,5/2,5	WR1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1 * HST 150W	Autom. control
30.	4/9	EOP 10,5/2,5	WR1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1 * HST 150W	Autom. control
31.	5/1	EOP 10,5/2,5	WR2/250/5 ${ }^{\circ}$	2 * BOYM.S. 150	2 * HST 150W	Autom. control
32.	5/2	EOP 12/2,5	WR2/250/5 ${ }^{\circ}$	2 * BOYM.S. 150	2 * HST 150W	Autom. control
33.	5/3	EOP 12/2,5	WR2/250/5 ${ }^{\circ}$	2 * BOYM.S. 150	2 * HST 150W	Autom. control
34.	5/4	EOP 12/2,5	WR2/250/5 ${ }^{\circ}$	2 * BOYM.S. 150	2 * HST 150W	Autom. control
35.	5/5	EOP 12/2,5	WR2/250/5 ${ }^{\circ}$	2 * BOYM.S. 150	2 * HST 150W	Autom. control
36.	5/6	EOP 12/2,5	WR2/250/5 ${ }^{\circ}$	2 * BOYM.S. 150	2 * HST 150W	Autom. control
37.	5/7	EOPIO,5/2,5	WR1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1 * HST 150W	Autom. control
38.	5/8	EOP 10,5/2,5	WR1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1 * HST 150W	Autom. control
39.	5/9	EOP 10,5/2,5	WR1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1 * HST 150W	Autom. control
40.	6/1	EOP 10,5/2,5	WR2/250/5 ${ }^{\circ}$	2 * BOYM.S. 150	2 * HST 150W	Autom. control
41.	6/2	EOP 10,5/2,5	WR2/250/5 ${ }^{\circ}$	2 * BOYM.S. 150	2 * HST 150W	Autom. control
42.	6/3	EOP 10,5/2,5	WR1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1 * HST 150W	Autom. control
43.	6/4	EOP 10,5/2,5	WR1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1 * HST 150W	Autom. control
44.	6/5	EOP 10,5/2,5	WR1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1 * HST 150W	Autom. control
45.	6/6	EOP 10,5/2,5	WR1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1 * HST 150W	Autom. control
46.	6/7	EOP 10,5/2,5	WR 1/250/5 ${ }^{\circ}$	1 * BOYM.S. 150	1 * HST 150W	Autom. control

47.	$6 / 8$	EOP 10,5/2,5	WR 1/250/5	1^{*} BOYM.S.150	1^{*} HST 150W	Autom. control
48.	$6 / 9$	EOP $10,5 / 2,5$	WR $1 / 250 / 5^{\circ}$	1^{*} BOYM.S.150	1^{*} HST 150W	Autom. control
49.	$6 / 10$	EOP $10,5 / 2,5$	WR $1 / 250 / 5^{\circ}$	1^{*} BOYM.S.150	1^{*} HST 150W	Autom. control
50.	$6 / 11$	EOP $10,5 / 2,5$	WR $1 / 250 / 5^{\circ}$	1^{*} BOYM.S.150	1^{*} HST 150W	Autom. control

Note: (*) All luminaires are supplied with passive power compensation system.

Table 2

Location of the light points	Type of lighting	Number of lamps	The way to control switch on and off functions	Comments
Lighting on the facility				
Above entry gates - POWERLUG2 1x150 W floodlight prod. LUG with asymmetric reflector	metal-halide	8	Controlled automatically	
On the longitudinal wall from track 22 direction - floodlight: e.g. SONPACK LX type 1x 70 W prod. THORN with asymmetric reflector	metal-halide	25	Controlled automatically	
On the northern wall of the warehouse - floodlight				
POWERLUG2 1x150 W prod. LUG with asymmetric reflector	metal-halide	5	Controlled automatically	
Lighting in the hall				
Main: suspended luminaire high - bay type Mitra New prod. ELGO	metal-halide HIT/400 W	100	Manual	Selected

Lighting under fixed servicing platforms - industrial luminaire - suspended COSMO type prod. ES-SYSTEM 2x T8/58 W	fluorescent	34		
Lighting in the canals and foundations of the equipment - NEPTUN PC T T type, prod. LUXIONA POLAND	fluorescent	240	Manual	

7. Signals, indicators and information boards in the Siding:
$\begin{array}{|c|c|c|c|c|}\hline \text { Type } & \text { Symbol } & \begin{array}{c}\text { Concerns the } \\ \text { following tracks } \\ \text { / turnouts }\end{array} & \text { Purpose } & \text { Comments } \\ \hline 1 & 2 & 3 & 4 & 5 \\ \hline \begin{array}{c}\text { Track closing } \\ \text { signal }\end{array} & \text { Z1 } \\ \text { „Stop" }\end{array}$ Tracks 27, 28 $\left.\begin{array}{c}\text { Marking of the end point } \\ \text { which trains may reach } \\ \text { before the bumper. }\end{array}\right]$

Indicators informing that the network inside the hall (along the track) is under voltage	-	Tracks 23b and 26 b	Inform whether the track traction network is under voltage (red colour) or not (white colour)	Indicators are displayed along these tracks, there are 20 pcs in total (5 pcs on each side of the track).

1) Manoeuver shields used in the Siding have been described in paragraph 4 of Annex 1.
2) Indicators, stopping shields, buffer shields and information board used in the Siding are not additionally limited during night time.
8. Overhead contact network in the Siding:

Description of the overhead contact network in the Siding, diagram of its layout and operating its circuit breakers and rules of the overhead contact network maintenance are specified in Annex 4 to the Regulations for the railway siding operations.

[^0]: Abbreviations used in the table: Rz - ordinary turnout, Rłd - two-sided flexure turnout, 49E1 - turnout type, suw. - slide-chair point lock, Wk - derail, CS - symbol of the switch in the Siding (Control Centre), e - electricity-driven shift of the switches.

